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ABSTRACT 

We present simple formulae for the next-to-the-leading order asymptotic 

freedom corrections to the moments of the non-singlet and the singlet combina- 

tions of the deep-inelastic structure functions for electron, muon and neutrino 

scattering. 
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During the past year the higher order calculations, necessary to obtain the 

next-to-the-leading order asymptotic freedom corrections to the deep-inelastic 

structure functions, have been completed. 1,2,3 In addition to the calculation of 

certain renormalization group functions (two-loop S function,4 two-loop anomalous 

dimension matrix,ly3 and one loop gluon and quark Wilson coefficient functions 2,3) , 

one has to deal with the mixing between quark and gluon operators. The mixing 

problem is much more difficult in the next-to-the-leading order than in the leading 

order. The authors of ref. 3 have solved this problem. However their final 

formulae for the Q2 dependence of the moments of deep-inelastic structure 

functions are very complicated.3’5’6 In particular the expressions of refs. 3 and 5 

involve thirteen functions of n, in addition to the familiar exponents d& and d: of 

the leading order. Since the functions in question have very complicated analytic 

expressions, one is led3y5 to the representation of higher order corrections by a 
* 

vast array of numbers. 

In this note we present equivalent but simpler expressions for the higher order 

corrections. In order to simplify the presentation we only state the final results 

and discuss them in some detail. The derivation of our formulae can be found in a 

review article by one of us.’ 

We present first the formulae for the moments of F2(x, Q*) for an arbitrary 

deep-inelastic process. We shall comment on other structure functions at the end 

of our paper. Consider the moments of F2(x, Q2) 

dx xn-2 F2(x, Q2) = MF’(n, Q*) + Mz(n, Q2) (1) 
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where “NS’ and V’ stand for non-singlet and singlet contributions respectively. The 

Q* dependence of MrS(n, Q2) and M$, Q2), up to and including next-to-the- 

leading order asymptotic freedom corrections, is then given as follows 

MNS(n Q*) = KNS 
-dk 

2 ’ n 

and 

M!$n, Q2) = Ki 1 + 
“; &Q*) 

[ ’ I 2 
Bolne 

;i2 a: 
Here 

Bl $,,(Q2) = $n-d:Blnln9f ; 
x2 

i = NS,+,- 
, 0 

(2) 

where 6, and gL are the coefficients of the perturbative expansion of the S 

function 

f3(g)=-f3,~- BI 
l&l2 

R5 
(161A2 

+ . . . 

(3) 

(4) 

(5) 

We have4’8 b, = 11 - $ f and 8f = 102 - yf where f is the number of flavors. 
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The parameters dy are the familiar exponents of the leading order. On the 

other hand, the parameters L?$,n are new and we have calculated them on the basis 

of the results of refs. 1-3. Numerical values for din and I?> n for f = 3 and 4 are 
-NS :, 

collected in the Table. Furthermore the constants An and An are not calculable 

in QCD perturbation theory. They can be treated as phenomenological parameters 

to be found by fitting Eqs. (2) and (3) to the data. 

As pointed out in ref. 2, the actual numerical values of the parameters R; n 
, 

depend on the definition of the effective coupling constant i2(Q2) or equivalently 

on the definition of the scale parameterx. The values for R\ n in the Table and 
9 

the n which enter Eqs. (l)-(3) correspond to the “minimal scheme bar” (m) 

introduced in ref. 2. Expressions for higher order corrections in different schemes 

for A can be obtained from Eqs. (2) and (3) by changing there 

I?in+ a!2n-80d:ln~~ , i = NS, +, - 
f , 

7i+ A k 

*k 
“k = x 

(6) 

(7) 

(8) 

distinguishes between various schemes. Needless to say all schemes are equivalent 

in the order considered and differ only by higher order corrections O(I/ln* Q2/A 2, 

not included in Eqs. (2)-(3). 

For completeness we present the formulae for Ri n in terms of the 
, 

renormalization group parameters which have been calculated in refs. 1-4, 8 and 9. 

We have 
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ITNS - ENS 
$.,n 

2,n - 2,n + 28, - 

-- 
R2,n , 

yf”?” A”5 1 
yEin+--L- 

y~l),n 
+ 

280 2g2 0 28,+X”-x: 

and 

“;,n = ‘l,n + 

yW,n x n8 
++-d--- + 1 

yW,n 
+- 

26 
0 4 23, +X:-X” 

where 

i3’ = gJI (A; - $9 
2,n 2,n + en 

Y*Ohn ’ 

(9) 

t (10) 

(11) 

It should be emphasized that the form of the last terms in Eqs.(lO) and (II) is 
n 

only true for our choice of the matrix U used to diagonalize one-loop anomalous 

dimension matrix (see Eq. 17). BNS $I 2,n, 2 n and $ n in Eqs. (9) to (12) are the 
t f / 

coefficients2’3 of g2/16n2 in the perturbative expansions of the Wilson coefficient 

functions of the non-singlet, singlet fermion and gluon operator respectively. 

The remaining parameters are defined by the following equations 

(12) 

^-l-O n^ u y’U= 

c 1:) 

( 
,(l),n 

U-lq(l),nU = -- 

$l),n 
+- 

y iO,n 
+ 

+l),n 
++ i 

(13) 

(14) 
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-0,n where y and $‘b are the one-loop9 and the two-loop ‘93 anomalous dimension 
,. 

matrices respectively, and U is a matrix which diagonaiizes y . 0,n . Furthermore 

A 0,n 
YJlG 

IS one of the non-diagonal elements of the matrix y -0,n and yi;” and y $$’ 

are the one-loop and the two-loop anomalous dimensions of nonsinglet operators 

respectively. We also recall that 

A? 
d; =ko i = NS, +, - (‘5) 

Compilations of analytic formulae and of numerical values necessary for the 

evaluation of the parameters on the r.h.s. of Eqs. (9)-(12) can be found in refs. 7 

and 10 in exactly the same notation as here. 

It should be remarked that the matrix 6 is not defined uniquely by Eq. (13). 
A ,. 

In fact any matrix U’ which is related to U by 

;Gq; “,) (16) 

where a and b are arbitrary finite numbers, satisfies Eq. (13). It can/be shown 

easily however that the numerical values of 8’ 2 n are independent of the choice of 9 ,. a 
the matrix U although the form of the last terms in Eqs. (10) and (11) depends on U. 

A 
The simple form of Eqs. (10) and (11) is obtained by using U for which 

b-1 = (17) 

It should be also added that in the notation of refs. 7 and 10 
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-1,n and similarly for y . 

The formulae (2) and (3) differ from the corresponding equations in refs. 3, 5 

and 6 in three aspects: 

i) They are much simpler, 

ii) No reference is made to a special vaiue of Q2 = Qi, and 

iii) No reference is made to the parton distributions. 

Let us briefly discuss points ii) and iii). 

Consider Eq. (2). One can choose a particular value of Q‘ = Qt and trade the 

unknown constants Kis for the experimentally measured moments My(n, QE). 

One obtains 

$%,-Q2) = MT%, Q;) * (19) 

It is obvious that Eqs. (2) and (19) are equivalent to each other through the next-to- 

the-leading order. Equation (19) may appear more convenient than Eq. (2) in 

phenomenological applications. According to Eq. (19) one is instructed to measure 

My%, Q*) at an arbitrary value Q2 = Qi. Then MF?n, Q2) at Q2 f Qz is given in 

terms of a sole free parameter ii. It should, however, be kept in mind that the 

value of Qz is arbitrary as required by the renormalization group equations and the 

predictions for the moments My%, Q2) should be independent of Qz, By picking 
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out one particular value of Qi in order to determine M2 NSh Qf) one gives this 

value specific significance. For consistency one should find MyS(n, Q$ from the 

data by choosing various values of Qt and check whether expressions (19) with 

various values of Qi give results compatible with each other. In order to simplify 

this procedure and at the same time to impose the independence of the 

phenomenological fit of Qi, it is convenient to get rid of Qi and use Eq. (2) instead. 

The unknown parameters “ts which appear there are constants which do not 

depend on Qz. 2 Similar comments apply to Eq. (3) where KL are Q- mdependent 

numbers to be found from experiment. Notice that essentially Eq. (2) can be 

obtained from Eq. (19) by setting in the latter equation Qz =m. We observe 

therefore that whereas Eq. (19) is an expansion around i2(Qz) b 0, Eq. (2) is the 

true asymptotic expansion around the fixed point of the theory which is at 

E2b) = 0. 

Regarding point iii) we would like to recall 3,11,12 that the parton 

distributions cannot be uniquely defined beyond the leading order of asymptotic 

freedom. Many definitions are possible which differ from each other by next-to- 

the-leading order corrections. Therefore the study of higher order effects on the 

Q* evolution of quark and gluon distributions does not make much sense because 

the result of such a study is not a prediction of the theory but depends sensitively 

on one’s definition of parton distributions. Still with a given definition of parton 

distributions, the parton language is useful in comparing asymptotic freedom 

predictions in various processes such as deep-inelastic scattering, u pair produc- 

tion, etc. 

Although the formulae for particular structure functions in terms of the 

effective Q2 dependent parton distributions may be relatively simple, the 

expressions for the Q2 evolution of these parton distributions in terms of their 
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values at a particular Q2 value, Q* = Qz, are very complicated. Examples can be 

found in refs. 3, 5, 6 and 7. Therefore we think that the simplest and most 

straightforward tests of higher order corrections can be done directly by means of 

the Eqs. (2) and (3) without any reference to parton distributions. 

After having discussed some attractive features of Eqs. (2) and (3) we should 

mention a possible limitation in the use of Eq. (3). We observe that the last term in 
-- 

the expression for R2 n in Eq. (IO) is singular when d: = d_” + 1. While this 
3 

singularity does not appear for physical values of n and f, it can lead to 

anomalously large higher order corrections to the “-‘I contributions and an apparent 

breakdown of perturbation theory. The singularity in E; n is of course spurious and 

-2 ’ is due to the mixing which can occur when the g corrections to “-” contributions 

are of the same order in g2 as the leading order “+” contributions. Hence, the 

singularity found in s,n is cancelled by a corresponding singularity in Tn. 

Although the procedure is somewhat arbitrary, we can isolate the singularity 

in K’, as follows 

-- 

“:, = AA + 
,(l),n 

-+ 

1 + d” - d: 
(20) 

where AA is nonsingular. The freedom associated with choosing the scale Q2 0 

reflects the arbitrariness of the separation of the singular part. Inserting Eq. (20) 

into Eq. (3), we obtain the following expression for the singlet moments 
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Q2) = .[l+80,~L ~;$cQ~)+& lf:‘yd, (3 ymd’)] 

-d_” -d; 

. (21) 

By using Eq. (IO), we observe the explicit cancellation of the singularity and for 

reasonable values of the scale Qz we do not expect the existence of the singularity 

to spoil the validity of perturbative nature of the next-to-the-leading corrections. 

As we have noted above, the singularity does not occur for physical values of 

n or f. For integer n the singularities occur for non-integer number of flavors, f. 

For n = 2, 4, 6, 8 and 10 the position of the singularity is at f = 5.583, 3.788, 1.627, 

0.142 and -0.988 respectively. The corresponding residue in -5 
,n are equal to 

-15.43, 1.36, 0.2, 0.007 and -0.02. We observe that the residue of the poles 

vanishes rapidly for the higher moments as the mixing decreases for largen. As a 

result only in the case of the second moment is the mixing large enough to require 

separation of the singular parts as described in Eqs. (20) and (21) and then only 

when f = 5 or 6. For aI1 other physical values of n and f, the existence of a nearby 

singularity does not disturb the validity of perturbative nature of the corrections 

and Eq. (3) can be safely used. 

In some cases it is useful to consider interpolation between different numbers 

of flavors as in an approximate treatment of quark mass effects. In such cases, 

care must be taken in using Eq. (3). 
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Another possible difficulty may occur in certain inversion procedures used in 

reconstructing the structure functions from the moments. Some procedures require 

a continuation of the moments to non-integer n. The singularities in -3 ,n for non- 

integer n may be expected to provide the leading singularity in this reconstruction. 

In most situations however the residue is small and will not strongly affect the 

reconstruction. In other situations, more care must be taken to ensure a proper 

treatment of the cancellation of this singularity before attempting a proper 

reconstruction of the structure functions. 

So far we have discussed only the structure function F2. For the longitudinal 

structure function F L expressions are much simpler because FL vanishes in the 

leading order. The relevant formulae are well known and can be found for instance 

in refs 7, 11 and 12. For F3, Eq. (2) or (1V)applies with R 2,n -NS (Q2) replaced by2,12 

2 R~,~(Q ) 
-NS 2 4 4n + 2 

= R2,"(Q 1-3 ni (22) 

with n odd for F;+” and n even for F”-“. 3 

Finally we would like to discuss the numerical evaluation of the parameters in 

Eqs. (2) and (3), and the size of higher order corrections. First we notice that for 

sufficiently large values of Q2 and for n) 4 the next-to-the-leading order 

corrections to the ‘Lo’ operator are at least as important as the leading 

contributions to the “+” operator. This is due to the fact that 

d; > d” + 1 for n ‘4 

Therefore for n ‘4 the next-to-the-leading order corrections to A- should be 

treated on the same footing as the leading order contributions to the ?i’ operator. 
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Furthermore for n > 8 the former contributions dominate over the latter ones. 

Similarly the next-to-the-leading order corrections to the “+” operator are for n > 4 

and large Q2 only as important as l/(ln2 Q2/.q2) corrections to the “-‘I operator. We 

further note that for n > 4 Em :: ENS and dv ‘= d” NS, which results from the small 

mixing between quark and gluon operators for large n and the identification of the 

“-I’ operator with the singlet quark operator. In addition in the framework of the 

parton model one expects “, to be much larger than “A which is confirmed by the 

data-l3 Thus one expects that for n > 4 the singlet structure function will behave 

essentially the same as the non-singlet structure function for typical hadronic 

targets. 

In terms of the effective coupling constant 

(23) 

2 

-2( 3 
In In Q 

;(Q2) 5 -+- = 5 - 4% - i? 

63 0 In2 Q! 
iL2 

the formulae (2) and (3) can be written as follows 

MN% Q2) = ANS[;(Q2) I 
dlls 

2 ’ n D;;n(??Q2)) (24) 

d” 

M$, Q2) = rnC?Q2) 1 - D; n(?Q2)) + Ki[ z(Q2) I 
d: 

- 2 D;,J dQ ) f (25) f 

where 

l&(E) = 1 +g Rin 
I 

i =NS,+, - . 
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The quantities Di , (-) 2 n CL are plotted in Fig. 1 as functions of a. The figure is 

presented mainly for illustration since the actual size of LJ~,~(E) depends on the 

definition of A or equivalently of z(Q2). The curves in the figure correspond to 5 

scheme2 for which 0.2 <z(Q2) < 0.5 for 2 < Q2 < 100 GeV2 as extracted from the 

BEBC data.2’14 

In summary, the main formulae of this paper are the Eqs. (2), (3) and (V-12) 

which provide a complete description of leading and next-to-the-leading asymptotic 

freedom corrections to deep-inelastic structure functions. Phenomenological 

applications of these expressions are beyond the scope of this paper. We hope that 

the simple formulae presented here will be useful in the study of asymptotic 

freedom corrections. 
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FOOTNOTE 

*Unfortunately the Tables 2 and 3 presented in ref. 5 are incorrect due to errors in 

Eqs. (2.11, 2.12 and 2.19) of Reference 3 which formed the basis of the calculation 

(D. Duke and D. Ross, private communication). These errors are not related to the 

calculation of the two loop anomalous dimensions also presented in Reference 3 and 

used in our calculation of the higher order corrections in this paper. 
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3 

4 

n d” NS d” ENS 
2,n 

-_ 
R2,n 

-+ 
R2,n 

2 0.395 0.000 0.617 1.951 -4.344 3.726 

4 0.775 0.760 1.638 7.956 9.078 17.07 

6 1.000 0.996 2.203 13.19 12.81 30.43 

8 1.162 1.160 2.587 17.64 17.53 41.72 

10 1.289 1.287 2.882 21.50 21.44 51.41 

2 0.427 

4 0.837 

6 1.080 

8 1.255 

10 1.392 

0.000 0.747 2.098 

0.817 1.852 8.117 

1.074 2.460 13.34 

1.252 2.875 17.78 

1.390 3.192 21.63 
-L 

-8.117 4.799 

0.811 18.17 

12.99 31.63 

17.65 43.01 

21.57 52.78 

- 

‘3,n 

-0.271 

6.756 

12.36 

17.01 

20.99 

-0.124 

6.917 

12.52 

17.15 

21.12 

n -NS --f Table 1. Numerical values of the parameters d&, d*, R 2 n R , ’ 24 
anda3yn for f = 3 and f = 4. 

Fig. 1: 

FIGURE CAPTION 

Size of the explicit second order corrections Di 2,n(G) in the z 

scheme for f= 4. 
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Erratum Erratum w w 
“Simple Formulae for Higher Order Asymptotic Freedom Correction” “Simple Formulae for Higher Order Asymptotic Freedom Correction” 

W.A. Bardeen and A.J. Buras W.A. Bardeen and A.J. Buras 
Physics Letters X60, 61, 1979 Physics Letters X60, 61, 1979 

Eq. 17 contains two misprints. The corrected equation should read as follows: 

A! - yy 

Yu”;;” 

O,n _ xn y + 
Ydptn +i 

(17) 

All other equations and results of this paper remain unchanged. 



Erratum 
“Higher Order Asymptofic-freedom Corrections to Photon-Photon Scattering” 

W.A. Bardeen and A.J. Buras 
Physical Review D20, 166, 1979 

There is a misprint in Eq. (3.29) of this paper, where the second appearance of 

-en 
should read yu’z’, All other equations and results remain unchanged. We 

thank D.W. Duke and J.F. Owens for informing us about this misprint. 


